

AT60

Receiving Card

V1.0.1

Specifications

Change History

Document Version	Firmware Version	Release Date	Description
V1.0.1	V4.6.2.0	2020-04-09	 Updated the firmware version. Updated the indicator description.
V1.0.0	V4.6.1.0	2020-01-02	First release

Introduction

The AT60 is a general small receiving card developed by NovaStar. A single AT60 loads up to 512x256 pixels. With various highlights such as pixel level brightness and chroma calibration, individual Gamma adjustment for RGB, 3D function, 18bit+ and low latency, the AT60 can greatly improve the display effect and user experience.

The AT60 uses high-density connectors for communication to limit effects of dust and vibration, resulting in high stability and reliability. It supports up to 32 groups of parallel RGB data or 64 groups of serial data (extendable to 128 groups of serial data). Its reserved pins allow for custom functions of users. Thanks to its EMC Class B compliant hardware design, the AT60 has improved electromagnetic compatibility and is suitable to many applications.

Features

Improvements to Display Effect

- Pixel level brightness and chroma calibration Working with NovaLCT and NovaCLB, the receiving card supports brightness and chroma calibration on each LED, which can effectively remove color discrepancies and greatly improve LED display brightness and chroma consistency, allowing for better image quality.
- Quick seam correction
 Working with NovaLCT, the receiving card
 supports quick adjustment of bright or dark lines
 caused by splicing of cabinets and modules.
 This function is easy to use and the adjustment
 takes effect immediately.
 - In NovaLCT (V5.2.0 or later), seam correction can be performed without using or changing the video source.
- Low latency
 The receiving card can reduce the frame latency of video source on the receiving card end to one frame (only when using modules with driver IC with built-in RAM).
- 3D function
 When the receiving card works with the
 independent controller which supports 3D
 function, users can enable the 3D function in
 NovaLCT or on operation panel of the controller,
 and set 3D parameters to allow for 3D display
 effects
- Individual Gamma adjustment for RGB Working with NovaLCT (V5.2.0 or later) and the independent controller which supports this

- function, the receiving card supports individual adjustment of red Gamma, green Gamma and blue Gamma, which can effectively control image non-uniformity under low grayscale and white balance offset, allowing for a more realistic image.
- 18Bit+ Activation of 18Bit+ mode in NovaLCT can improve LED display grayscale by 4 times, avoiding grayscale loss due to low brightness and allowing for a finer image.
- Image rotation in 90° increments
 In NovaLCT, the display image can be set to rotate in multiples of 90° (0°, 90°, 180° and 270°).

Improvements to Maintainability

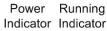
- Smart module (supported by dedicated firmware)
 The smart module is composed of Flash and MCU.
 - Flash can store calibration coefficients and module parameters. MCU can communicate with the receiving card to monitor temperature, voltage and ribbon cable communication status at the module level. Working with the driver chip, MCU also supports LED error detection.
 - The smart module allows for a smaller monitoring unit, requiring no independent monitoring card and saving cabinet space.
- Automatic module calibration
 After the module (with module Flash) has been replaced and power is supplied, the receiving card can automatically read the new module ID

- and calibration coefficients, and save them to the receiving card.
- Module Flash management
 Module Flash information can be managed in
 NovaLCT. The module ID can be managed, and
 calibration coefficients and module parameters
 can be stored in the module Flash.
- One-click application of calibration coefficients saved in module Flash
 In the event of network outage, users can hold down the self-test button to read the calibration coefficients in module Flash back to the receiving card.
- Mapping function
 After the Mapping function is enabled in
 NovaLCT, each of the target cabinets will display the receiving card number and Ethernet port information, allowing users to easily obtain the location and wiring route of receiving cards.
- Setting of pre-stored image on receiving card In NovaLCT, a specified image can be set as the LED screen startup image or as the image to be displayed on LED screen when the Ethernet cable is disconnected or no video signal is available.
- Voltage and temperature monitoring
 The voltage and temperature of the receiving card can be monitored without using peripherals.

 The monitoring data can be checked in NovaLCT.
- Cabinet LCD
 The receiving card supports the LCD connected to the cabinet. The LCD can display temperature, voltage, single operating time and total operating time of the receiving card.
- Bit error rate monitoring
 The receiving card can work with NovaLCT
 (V5.2.0 or later) to monitor the network
 communication quality between the sending
 device and receiving card, or between receiving

- cards, and record the number of erroneous packets to help troubleshoot network communication problems.
- Readback of firmware program
 In NovaLCT (V5.2.0 or later), the receiving card firmware program can be read back and saved to local computer.
- Readback of configuration parameters
 In NovaLCT, the receiving card configuration
 parameters can be read back and saved to local computer.

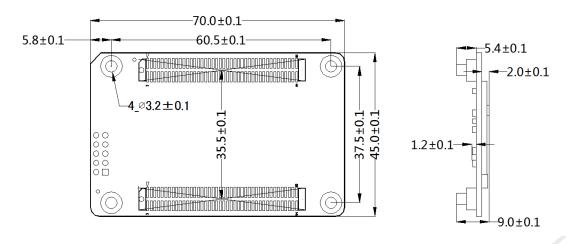
Improvements to Reliability


- Dual-card backup and status monitoring
 In an environment with requirements for high
 reliability, two receiving cards can be mounted
 onto a single HUB board. In the case that main
 receiving card fails, the backup card will serve to
 ensure uninterrupted operation of the display.
 - The working status of main and backup receiving cards can be monitored in NovaLCT (V5.2.0 or later).
- Status monitoring of dual power supplies
 The receiving card supports dual power supplies
 and can detect whether their working statuses
 are normal.
- Loop backup
 The receiving card can improve the reliability for cascading of receiving cards through main and backup redundant mechanism. If either main or backup cascading lines fail, the other will begin

to work to ensure uninterrupted operation of the

Dual backup of program
 Two copies of application programs are saved in the receiving card at the factory to avoid the problem that the receiving card may get stuck due to program update exception.

Appearance

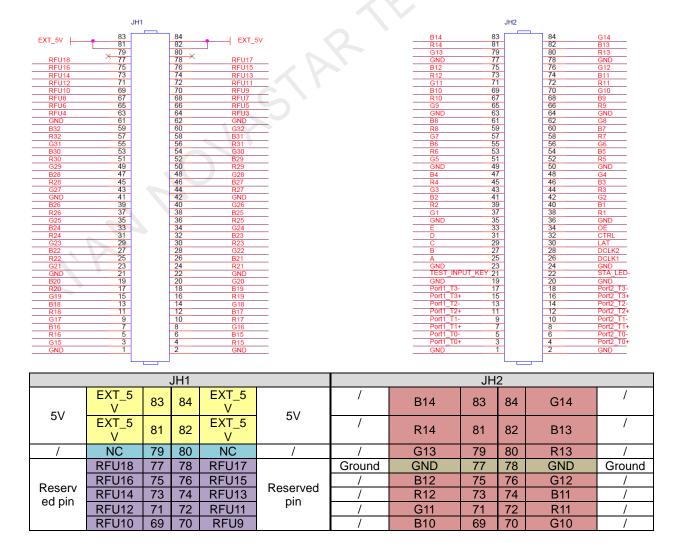

High-Density Connector

All product pictures shown in this document are for illustration purpose only. Actual product may vary.

Indicators

Indicator	Color	Status	Description		
Running Green indicator		Flashing once every other 1s	Receiving card is functioning normally. Ethernet cable connection is normal, and video source input is available.		
		Flashing once every other 3s	Ethernet cable connection is abnormal.		
		Flashing 3 times every other 1s	Ethernet cable connection is normal, but no video source input is available.		
7		Flashing every other 0.2s	Receiving card failed to load the program in the application area and now is using the backup program.		
)	Flashing 8 times every other 1s	A redundancy switchover occurred on the Ethernet port and the loop backup has taken effect.		
Power indicator	Red	Always on	The power input is normal.		

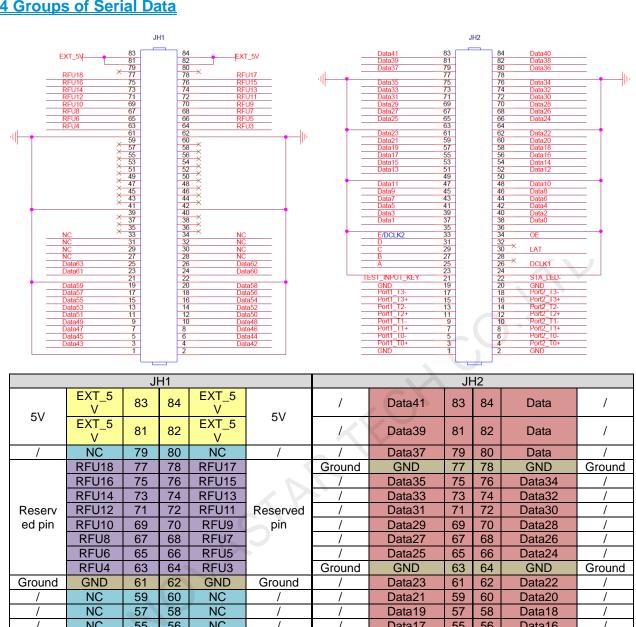
Dimensions


Unit: mm

Note:

The distance between outer surfaces of AT60 and HUB boards after their high-density connectors fit together is 8.0 mm. An 8-mm copper pillar is recommended.

Pins


32 Groups of Parallel RGB Data

JH1						JH2					
	RFU8	67	68	RFU7		/	R10	67	68	B9	/
	RFU6	65	66	RFU5		/	G9	65	66	R9	/
	RFU4	63	64	RFU3		Ground	GND	63	64	GND	Ground
Ground	GND	61	62	GND	Ground	/	B8	61	62	G8	/
/	B32	59	60	G32	/	/	R8	59	60	B7	/
/	R32	57	58	B31	/	/	G7	57	58	R7	/
/	G31	55	56	R31	/	/	B6	55	56	G6	/
/	B30	53	54	G30	/	/	R6	53	54	B5	/
/	R30	51	52	B29	/	/	G5	51	52	R5	/
/	G29	49	50	R29	/	Ground	GND	49	50	GND	Ground
/	B28	47	48	G28	/	/	B4	47	48	G4	/
/	R28	45	46	B27	/	/	R4	45	46	B3	/
/	G27	43	44	R27	/	/	G3	43	44	R3	/
Ground	GND	41	42	GND	Ground	/	B2	41	42	G2	/
/	B26	39	40	G26	/	/	R2	39	40	B1	/
/	R26	37	38	B25	/	/	G1	37	38	R1	/
/	G25	35	36	R25	/	Ground	GND	35	36	GND	Ground
/	B24	33	34	G24	/		E/DCLK2	33	34	OE	Display enable
/	R24	31	32	B23	/	1	D	31	32	NC	/
/	G23	29	30	R23	/	Line decodin	С	29	30	LAT	Latch signal output
/	B22	27	28	G22	/	g signal	В	27	28	NC	,
/	R22	25	26	B21	/		A	25	26	DCLK1	Shift clock output
/	G21	23	24	R21	/	Ground	GND	23	24	GND	Ground
Ground	GND	21	22	GND	Ground	Test button	TEST_INP UT_KEY	21	22	STA_LED-	Status indicato r
/	B20	19	20	G20	/	Ground	GND	19	20	GND	Ground
/	R20	17	18	B19	/		Port1_T3-	17	18	Port2_T3-	
/	G19	15	16	R19	1		Port1_T3+	15	16	Port2_T3+	
/	B18	13	14	G18	/	Ciash:	Port1_T2-	13	14	Port2_T2-	Ciachit
/	R18	11	12	B17		Gigabit	Port1_T2+	11	12	Port2_T2+	Gigabit Etherne
/	G17	9	10	R17	/	Etherne	Port1_T1-	9	10	Port2_T1-	
/	B16	7	8	G16	/	t port	Port1_T1+	7	8	Port2_T1+	t port
/	R16	5	6	B15	/		Port1_T0-	5	6	Port2_T0-	
/	G15	3	4	R15	/		Port1_T0+	3	4	Port2_T0+	
Ground	GND	1	2	GND	Ground	Ground	GND	1	2	GND	Ground

www.novastar.tech PAGE 5

64 Groups of Serial Data

NC 55 56 NC Data17 55 56 Data16 / NC 53 54 NC / / Data15 53 54 Data14 / NC 51 52 NC Data13 51 52 Data12 NC 49 50 NC Ground **GND** 49 50 **GND** Ground 47 NC 47 48 NC Data11 48 Data10 NC 45 46 NC Data9 45 46 Data8 / NC 43 44 NC 43 44 / / Data7 Data6 Ground **GND** 41 42 **GND** Ground 41 42 / Data5 Data4 Data3 NC 39 40 NC 39 40 Data2 / NC 37 38 NC 37 Data1 38 Data0 NC 35 36 NC **GND GND** Ground 35 36 Ground Display NC / NC 33 34 / E/DCLK2 34 OE 33 enable NC 31 32 NC D 31 32 NC Latch Line NC 29 30 NC / С 29 30 LAT signal decodin output g signal NC 27 28 NC В 27 NC / / 28 Shift DCLK1 Data63 25 26 Data62 / Α 25 26 clock output Data61 23 24 Ground **GND** 23 24 **GND** Data60 Ground Test TEST_INP Status **GND** 21 22 **GND** 21 22 STA_LED-Ground Ground button UT KEY indicato

JH1						JH2					
											r
/	Data59	19	20	Data58	/	Ground	GND	19	20	GND	Ground
/	Data57	17	18	Data56	/		Port1_T3-	17	18	Port2_T3-	
/	Data55	15	16	Data54	/		Port1_T3+	15	16	Port2_T3+	
/	Data53	13	14	Data52	/	Cigobit	Port1_T2-	13	14	Port2_T2-	Cigobit
/	Data51	11	12	Data50	/	Gigabit Etherne	Port1_T2+	11	12	Port2_T2+	Gigabit Etherne
/	Data49	9	10	Data48	/	t port	Port1_T1-	9	10	Port2_T1-	t port
/	Data47	7	8	Data46	/	ιροπ	Port1_T1+	7	8	Port2_T1+	ιροιι
/	Data45	5	6	Data44	/		Port1_T0-	5	6	Port2_T0-	
/	Data43	3	4	Data42	/		Port1_T0+	3	4	Port2_T0+	
Ground	GND	1	2	GND	Ground	Ground	GND	1	2	GND	Ground

Reference Design for Extended Functions

	Description of Pins for Extended Functions					
Pin	Recommended Module Flash Pin	Recommended Smart Module Pin	Description			
RFU4	HUB_SPI_CLK	Reserved	Clock signal of serial pin			
RFU6	HUB_SPI_CS	Reserved	CS signal of serial pin			
RFU8	HUB_SPI_MOSI	/	Module Flash storage data input			
KFU0	/	HUB_UART_TX	Smart module TX signal			
RFU10	HUB_SPI_MISO	/	Module Flash storage data output			
KFUIU	/	HUB_UART_RX	Smart module RX signal			
RFU3	HUB_					
RFU5	HUB_	Module Flash BUS control pin				
RFU7	HUB_					
RFU9	HUB_	CODE3				
RFU14	POWE	R_STA1	Dual newer augusty detection signal			
RFU16	POWE	Dual power supply detection signal				
RFU15	MS	DATA	Dual-card backup connection			
KF013	IVIS_	signal				
RFU17	MS	Dual-card backup identifier signal				

Note:

The RFU8 and RFU10 are signal multiplex extension pins. Only one pin from either the Recommended Smart Module Pin or the Recommended Module Flash Pin can be selected at the same time.

Specifications

Maximum Loading Capacity	512×256 pixels			
Electrical	Input voltage	DC 3.3 V-5.5 V		
Specifications	Rated current	0.6 A		
	Rated power consumption	3.0 W		
Operating Environment	Temperature	-20°C to +70°C		
Environment	Humidity	10% RH to 90% RH, non-condensing		
Storage Environment	Temperature	-25°C to +125°C		
Environment	Humidity	0% RH to 95% RH, non-condensing		
Physical Specifications	Dimensions	70.0 mm × 45.0 mm × 9.0 mm		
Specifications	Net weight	16.5 g		
Packing	Packing specifications	An antistatic bag and anti-collision foam are provided for each		

www.novastar.tech PAGE 7

Information		receiving card. Each packing box contains 40 receiving cards.
	Packing box dimensions	378.0 mm × 190.0 mm × 120.0 mm
Certifications	RoHS, EMC Class B	

PAGE 8

Copyright © 2020 Xi'an NovaStar Tech Co., Ltd. All Rights Reserved.

No part of this document may be copied, reproduced, extracted or transmitted in any form or by any means without the prior written consent of Xi'an NovaStar Tech Co., Ltd.

Trademark

NOVA) 5TAR is a trademark of Xi'an NovaStar Tech Co., Ltd.

Statement

You are welcome to use the product of Xi'an NovaStar Tech Co., Ltd. (hereinafter referred to as NovaStar). This document is intended to help you understand and use the product. For accuracy and reliability, NovaStar may make improvements and/or changes to this document at any time and without notice. If you experience any problems in use or have any suggestions, please contact us via contact info given in document. We will do our best to solve any issues, as well as evaluate and implement any suggestions.

Official website www.novastar.tech

Technical support support@novastar.tech